QUICK REFERENCE

9922 522 43 ... series

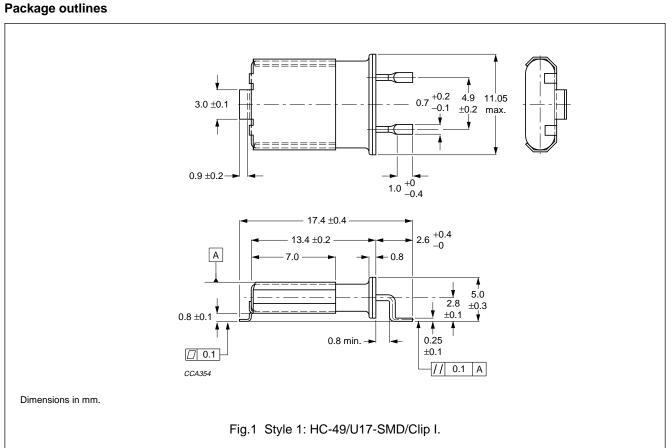
FEATURES

- Outstanding electrical performance
- Low resistance values
- High pullability values
- High mechanical and electrical stability
- Low ageing.

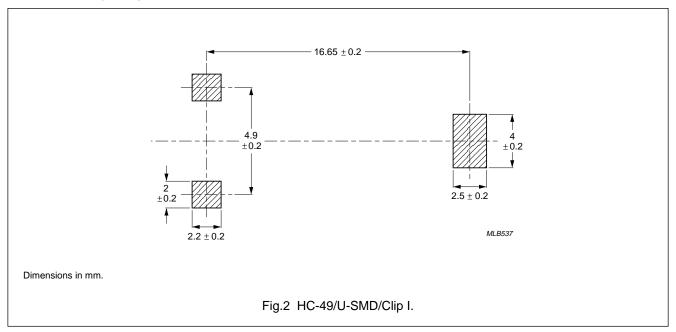
APPLICATIONS

- Microprocessors
- Traffic control
- Weather balloons
- Medical systems
- Military applications
- Communication systems
- Agrarian applications
- Machine control
- Environmental applications.

DESCRIPTION

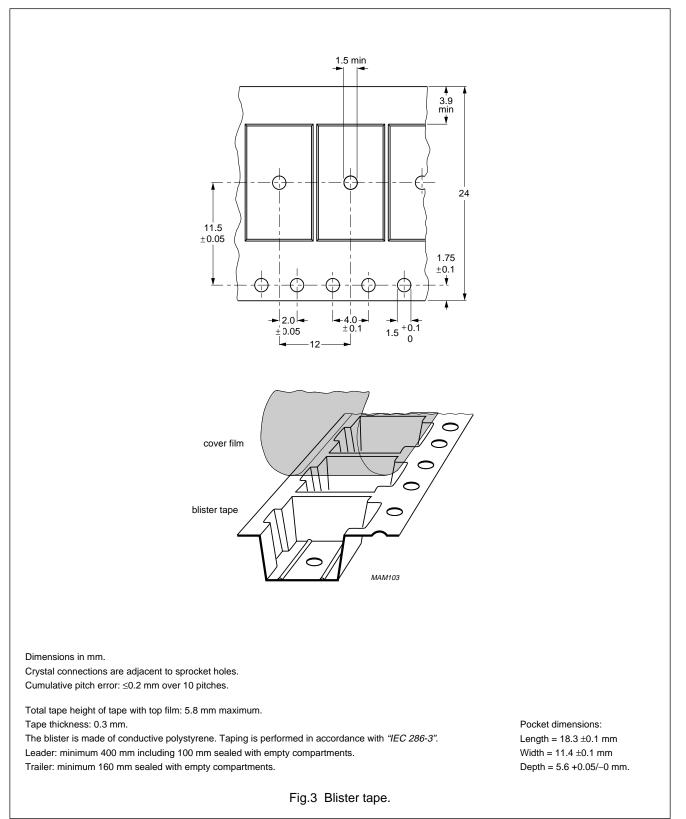

The unit consists of a silver-plated AT-cut quartz plate, encapsulated in a nitrogen-filled metal holder. The holder is hermetically sealed by resistance welding and provided with connections for surface mounting.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
f _{nom}	nominal frequency:				
	fundamental mode	2.4	-	27.0	MHz
	third overtone	16.8	-	75.0	MHz
	fifth overtone	50.0	_	125.0	MHz
T _{oper}	operating temperature	-40	_	+105	°C
T _{op}	operable temperature	-55	-	+155	°C
$\Delta f/f_{nom}$	adjustment tolerance	±5	±10	_	ppm
$\Delta f/f_{25}$	frequency stability over temperature range: -20 to +70 °C with respect to $T_{amb} = 25$ °C:				
	class 0	_	±10	_	ppm
	class 1	_	±15	_	ppm
	class 2	_	±20	_	ppm
C ₁	motional capacitance tolerance	±5	±10	_	%
C ₀	parallel capacitance tolerance	±5	±10	_	%
$\Delta f/f$	ageing over 10 years at 25 °C	±3	_	±5	ppm

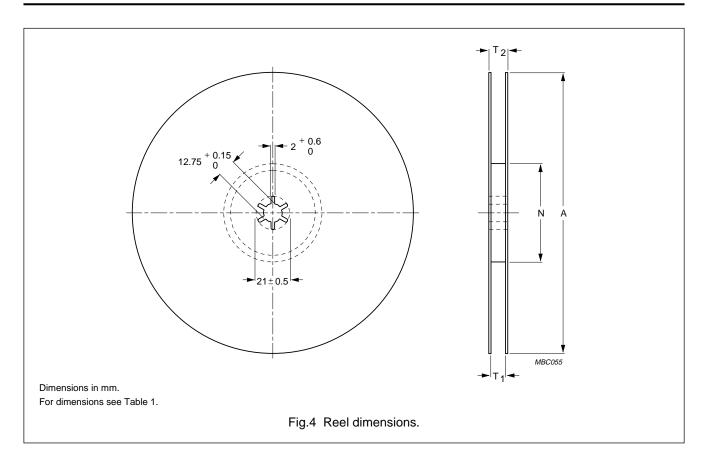

9922 522 43... series

MECHANICAL DATA

Deekers suttings



Recommended pad layout



9922 522 43... series

Tape and reel data

9922 522 43 ... series

Table 1 Reel dimensions; see Fig.4

TAPE WIDTH	A	N	T ₁	T ₂
(mm)	(mm)	(mm)	(mm)	(mm)
24	330	62 ±1.5	24.4 +0.2/-0	28.4 ±0.2

PACKAGING AND QUANTITIES

STYLE	PACKAGING	QUANTITY	DIMENSIONS OF BOX (mm)		
JILL			LENGTH	WIDTH	HEIGHT
1	blister tape on reel	700 units per reel	338	338	38
	blister tray	700 units per box	200	125	70

STANDARD MARKING⁽¹⁾

- Line 1: PHILIPS
- Line 2: frequency in kHz (fundamental mode) or in MHz (overtone)
- Line 3: last five digits of catalogue number followed by the manufacturing date code (last three digits of week code).

MASS AND LEADS

Typical mass: 1.2 g.

The leads are finished with either Sn99Cu1 or Sn60Pb40 on a nickel underplate.

The first 1 mm from the body is not guaranteed for soldering.

(1) Special marking on product and/or package is available on request.

9922 522 43... series

ELECTRICAL DATA

Valid at $T_{amb} = 25 \pm 2 \ ^{\circ}C$ and a nominal drive level of 100 μ W into 25 Ω unless otherwise specified. Measuring system: π -network in accordance with *"IEC 444"* recommendations.

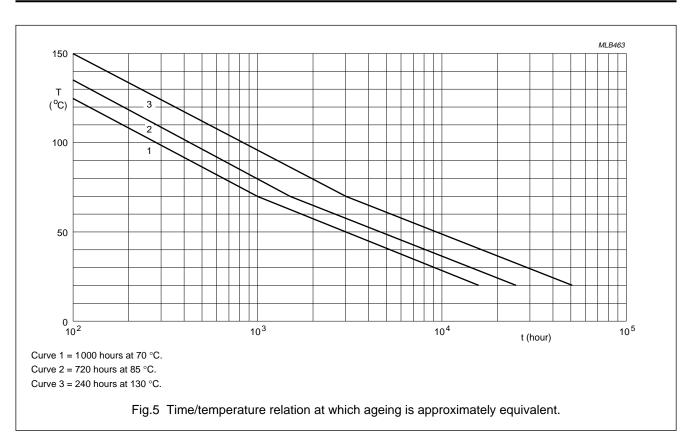
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{nom}	nominal frequency	fundamental	2.4	_	27.0	MHz
		third overtone	16.8	-	75.0	MHz
		fifth overtone	50.0	-	125.0	MHz
$\Delta f/f_{nom}$	adjustment tolerance		±5	±10	_	ppm
R _r	resonance resistance	see note 1	-	-	_	Ω
CL	load capacitance	see note 2	5	20	∞	pF
T _{oper}	operating temperature		-40	_	+105	°C
T _{op}	operable temperature		-55	-	+155	°C
$\Delta f/f_{25}$	frequency stability over temperature range, with respect to $T_{amb} = 25 \text{ °C}$		See	Table 2	•	ppm
R _r (T)	resonance resistance over temperature range	see note 1	available from R _r upwards		Ω	
C ₁	motional capacitance					fF
	tolerance		±5	±10	-	%
C ₀	parallel capacitance			•	•	pF
	tolerance		±5	±10	-	%
S	pulling sensitivity		$S = -0.5 C_1 / (C_0 + C_L)^2$		ppm/pF	
R _n	resonance resistance of unwanted response (spurious)	fundamental mode; f _{nom} ±20%	2 R _r (T)	-	-	Ω
			+6	-	-	dB
		overtones; f _{nom} ±200 kHz	2 R _r (T)	-	-	Ω
			+6	-	-	dB
R _{dld}	drive level dependency, being the resonance resistance in the drive level range	drive level range 10 ⁻¹⁶ W to 10 ⁻⁴ W; note 1	see note 2		Ω	
R _{ins}	insulation resistance	DC test voltage = 100 V	500	_	-	MΩ
$\Delta f/f_{nom}$	total frequency stability with respect to f _{nom}	including temperature range and ageing	see Table 2			ppm
	frequency hysteresis or discontinuity		_	-	1	ppm
$\Delta f/f$	ageing	see Figs 5 and 6	±3	_	±5	ppm

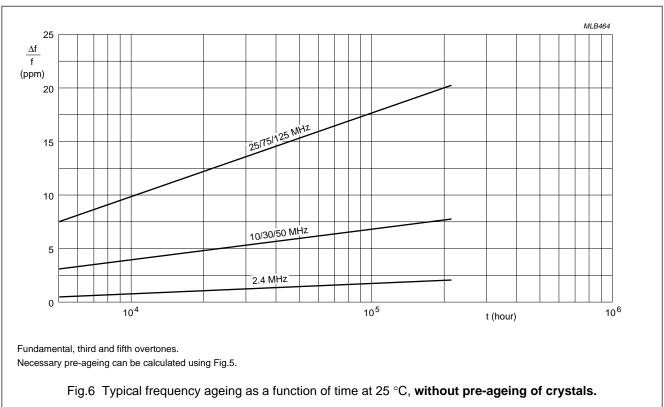
Notes

1. All resistance values are measured in series resonance. Load resonance measurement is available on request.

2. Values available on request.

9922 522 43... series


TEMPERATURE RANGE ⁽¹⁾	FREQUENCY STABILITY (ppm)			
(°C)	CLASS 0	CLASS 1	CLASS 2	
+20/+30	±1.0	±1.5	±2.0	
0/+50	±5.0	±7.5	±10.0	
-10/+60	±7.5	±10.0	±15.0	
-20/+70	±10.0	±15.0	±20.0	
-30/+80	±12.5	±20.0	±25.0	
-40/+90	±17.5	±25.0	±30.0	
-55/+105	±25.0	±30.0	±40.0	
-40/+130	_	±50.0	±80.0	


Table 2 Frequency stability with temperature variation (available maximum values)

Note

1. To obtain the same stability at frequencies below 8.0 MHz, the upper temperature limit is 10 °C lower.

9922 522 43... series

9922 522 43... series

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with IEC publication 68-2, *"Recommended basic climatic and mechanical robustness testing procedure for electronic components"* and IEC publication 1178-1, *"Generic specification for quartz crystal units"*.

IEC 68-2 METHOD	TEST	PROCEDURE	REQUIREMENTS
Ва	ageing	1000 hours at 70 °C	$\Delta f/f \le \pm 5 \text{ ppm}$
			$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Db	accelerated damp heat	+25 to +55 °C;	$\Delta f/f \le \pm 5 \text{ ppm}$
		6 cycles at RH >95%	$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Ea	shock; note 2	100 g; half sinewave; 6 directions;	$\Delta f/f \le \pm 5 \text{ ppm}$
		1 blow/direction	$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Eb	bump; note 2	4000 bumps of 40 g	$\Delta f/f \le \pm 5 \text{ ppm}$
			$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Ed	id free fall; note 2 3 times on hard wood; for height of fall (h) see Table 4	,	$\Delta f/f \le \pm 5 \text{ ppm}$
		for height of fall (h) see Table 4	$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Fc	vibration	frequency 10 to 500 to 10 Hz;	$\Delta f/f \le \pm 5 \text{ ppm}$
		acceleration 10 g; 3 directions; 30 minutes/direction	$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Na	temperature cycling test	-40 to +85 °C; 10 cycles;	$\Delta f/f \le \pm 5 \text{ ppm}$
		0.1 hour/cycle	$\Delta R_r \pm 5 \Omega$ or $\pm 20\%$ whichever is the greater
Q	sealing (method 1)	16 hours; 700 kPa He	$<1 \times 10^{-8}$ ncc/s He
Та	solderability	235 ± 5 °C; 2 ± 0.5 s; flux 600 (activated); optional steam pre-heat 8 hours. This reflects at least 36 months of storage at room conditions	≥90%, on the flat lead part; no visible damage, no leaks
Tb	resistance to reflow soldering	rise 10 K/s; dwell 2 min/160 °C;	$\Delta f/f \le \pm 5 \text{ ppm}$
		rise 10 K/s up to 280 °C; cool down	$\Delta R_r \pm 5 \Omega \text{ or } \pm 20\%$ whichever is the greater

Table 3	Test procedures and requirer	nents; note 1
---------	------------------------------	---------------

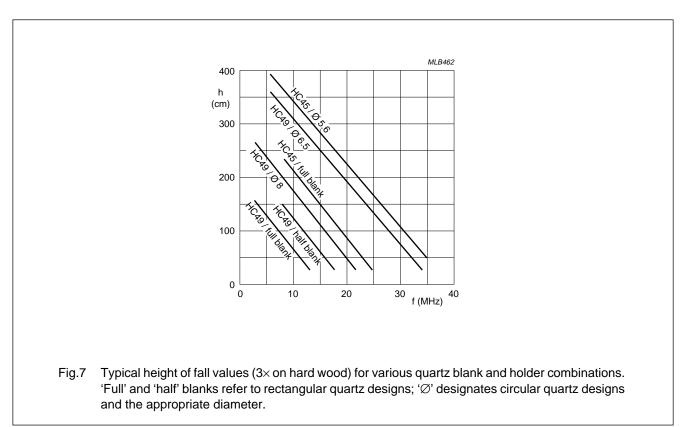
9922 522 43... series

IEC 68-2 METHOD	TEST	PROCEDURE	REQUIREMENTS
Other appli	cable tests		
Xa	resistance to solvents; note 3: Bio-Act EC7 [®] ; Neutropon P3 [®] and Saxin P3 [®] ; Meta Clean 820 [®] ; Lonco 446 [®] ; Isopropanol cleaning solvent; Dowanol DPM [®] (glass crystals only)	in accordance with <i>"IEC 68-2-45"</i> , <i>"IEC 653"</i> (immersion time 5 minutes) and <i>"MIL 202 E215"</i> . At ambient temperature and ultrasonic frequency (40 kHz)	no degradation of marking

Notes

- 1. Test table including MIL-specs ("MIL-Std 883" and "MIL-Std 202") can be provided upon request.
- 2. Mechanical tests to be performed on units clamped to a printed-circuit board for the total unit height.
- Bio-Act is a registered trademark of Petroform. Neutropon P3 and Saxin P3 are registered trademarks of Henkel. Meta Clean 820 is a registered trademark of Mavom.

Lonco 447 is a registered trademark of London Chemical Co.


Dowanol DPM is a registered trademark of Dow Chemical.

9922 522 43... series

h (mm)	PRODUCT LENGTH	FREQUENCY RANGE ⁽¹⁾ (MHz)		
(mm)	(mm)	FUNDAMENTAL MODE	THIRD OVERTONE	FIFTH OVERTONE
750	17	2.4 to 16.0	20.0 to 48.0	50.0 to 80.0
500	17	16.1 to 27.0	48.1 to 75.0	80.1 to 125.0

Note

1. Standard values. Actual designs can be made to obtain higher or lower values.

